Constructing Internally 4-connected Binary Matroids
نویسندگان
چکیده
In an earlier paper, we proved that an internally 4connected binary matroid with at least seven elements contains an internally 4-connected proper minor that is at most six elements smaller. We refine this result, by giving detailed descriptions of the operations required to produce the internally 4-connected minor. Each of these operations is top-down, in that it produces a smaller minor from the original. We also describe each as a bottom-up operation, constructing a larger matroid from the original, and we give necessary and sufficient conditions for each of these bottom-up moves to produce an internally 4-connected binary matroid. From this, we derive a constructive method for generating all internally 4-connected binary matroids.
منابع مشابه
Towards a splitter theorem for internally 4-connected binary matroids II
Let M and N be internally 4-connected binary matroids such that M has a proper N -minor, and |E(N)| ≥ 7. As part of our project to develop a splitter theorem for internally 4-connected binary matroids, we prove the following result: if M\e has no N -minor whenever e is in a triangle of M , and M/e has no N -minor whenever e is in a triad of M , then M has a minor, M ′, such that M ′ is internal...
متن کاملA Splitter Theorem for Internally 4-Connected Binary Matroids
We prove that if N is an internally 4-connected minor of an internally 4-connected binary matroid M with E(N) ≥ 4, then there exist matroids M0,M1, . . . ,Mn such that M0 ∼= N , Mn = M , and, for each i ∈ {1, . . . , i}, Mi−1 is a minor of Mi, |E(Mi−1)| ≥ |E(Mi)| − 2, and Mi is 4-connected up to separators of size 5.
متن کاملTowards a Splitter Theorem for Internally 4-connected Binary Matroids Iii
This paper proves a preliminary step towards a splitter theorem for internally 4-connected binary matroids. In particular, we show that, provided M or M∗ is not a cubic Möbius or planar ladder or a certain coextension thereof, an internally 4-connected binary matroid M with an internally 4-connected proper minor N either has a proper internally 4-connected minor M ′ with an N -minor such that |...
متن کامل5 F eb 2 00 9 The Internally 4 - Connected Binary Matroids With No M ( K 3 , 3 ) - Minor . Dillon Mayhew Gordon Royle
We give a characterization of the internally 4-connected binary matroids that have no minor isomorphic to M(K3,3). Any such matroid is either cographic, or is isomorphic to a particular single-element extension of the bond matroid of a cubic or quartic Möbius ladder, or is isomorphic to one of eighteen sporadic matroids. 2000 Mathematics Subject Classification. 05B35.
متن کاملA chain theorem for internally 4-connected binary matroids
Let M be a matroid. When M is 3-connected, Tutte’s WheelsandWhirls Theorem proves that M has a 3-connected proper minor N with exactly one element fewer than M unless M is a wheel or a whirl. I will present a corresponding result for internally 4-connected binary matroids. This presentation is based on joint work by myself, Dillon Mayhew, and James Oxley.
متن کامل